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Abstract. This paper deals with small geometrical and mechanical perturbations in nonlinear
structural dynamics of three-dimensional viscoelastic rotating structures for finite displace-
ments. The objective of the paper is to present the nonlinear equations of the problem written
in the rotating frame. The constitutive equation of the material is given for its natural config-
uration (structure at rest and without prestress). The three-dimensional viscoelasticity theory
(stresses depend on actual and past strains) with finite displacements of B.D. Coleman and W.
Noll (1961) is used without taking into account the material nonlinearities. The reference con-
figuration is defined as the stationary configuration corresponding to the prestress configuration
under gyroscopic forces and stationary parts of the external forces applied to the structure in
the rotating frame. Then, for small geometrical and mechanical perturbations (mass density,
constitutive equation coefficients) applied to the natural configuration, nonlinear equations
around the reference configuration are derived in the time domain and then, the corresponding
linearized equations are deduced in the frequency domain and reduced using the Ritz-Galerkin
method. This paper shows that the equations obtained for geometrical perturbations are not
self-evident.

Keywords: Structural dynamics, Rotating structures, Nonlinear elasticity, Geometrical pertur-
bations.

1. NONLINEAR EQUATIONS IN THE ROTATING FRAME OF A ROTATING
STRUCTURE.

Physical space R3 is referred to a Cartesian reference system (e0;1; e0;2; e0;3) with origin
O denoted as R0. The rotating frame (related to the structure in rotation) denoted as R1 is
defined by origin O and a direct orthonormal basis (e1;1(t); e1;2(t); e1;3(t)) which is deduced
from (e0;1; e0;2; e0;3) by a rotation represented by an orthogonal (3� 3) real matrix [Q(t)] and
is such that

e1;p(t) = [Q(t)] e0;p ; p = 1; 2; 3 : (1)

In R0 and at time t, the deformed configuration of the structure occupies a domain denoted ase
(t) with boundary e�(t) [ e�(t). We impose on e�(t) a rigid-body displacement field defined



by the rotation associated with [Q(t)]. In order to describe the mouvement of the structure in
rotating frame R1, we introduce a rotating natural configuration of the structure denoted as 
0
in R1 with boundary �0 [ �0 (no pre-stresses in the natural configuration). The observation
of 
0 in R0 is the domain denoted as e
0(t) with boundary e�0(t) [ e�0(t). The structure is
submitted to an external body force field e�(t;ex)ef(t;ex) in e
(t) in which e� is the mass density
of e
(t) and a surface force field eF(t;ex) on e�(t). We denote the Cauchy stress tensor related toe
(t) as e�. The observation of domain e
(t) in rotating frameR1 is the domain denoted as 
(t)
with boundary �(t) [ �(t). Finally, we have


(t) =
n

x j x = [Q(t)]Tex ; ex 2 e
(t)o ; (2)

�(t) =
n

x j x = [Q(t)]Tex , ex 2 e�(t)o ; (3)

�(t) =
n

x j x = [Q(t)]Tex , ex 2 e�(t)o ; (4)


0 =
n

x0 j x0 = [Q(t)]Tex0 , ex0 2 e
0(t)o ; (5)

�0 =
n

x0 j x0 = [Q(t)]Tex0 , ex0 2 e�0(t)o ; (6)

�0 =
n

x0 j x0 = [Q(t)]Tex0 , ex0 2 e�0(t)o : (7)

The displacement field in R1 of 
(t) with respect to 
0 is denoted as u0 and is such that

x(t; x0) = x0 + u0(t; x0) ; 8 x0 2 
0 : (8)

Using the methodology presented by Truesdell (1974), we can deduce the equations of the
rotating structure for the deformed configuration expressed in R1, which are written as

8 x 2 
(t) , divx�+ � f = �

�
[R(t)]2 + [ _R(t)]

�
x + 2� [R(t)] _x + � �x ; (9)

8 x 2 �(t) , �n = F ; (10)

8 x0 2 �0 , u0(t; x0) = 0 ; (11)

in which � is the mass density of configuration 
(t), a dot means the partial derivative with
respect to t and where

�(t; x) = [Q(t)]T e�(t;ex) [Q(t)] ; �(t; x) = e�(t;ex) ; f(t; x) = [Q(t)]T ef(t;ex) ;

[R(t)] = [Q(t)]T [ _Q(t)] ; n = [Q(t)]T en ; F(t; x) = [Q(t)]T eF(t;ex) ;

where exponent T means the transpose of a matrix. It should be noted that [R(t)]T = �[R(t)].
If the rotation axis and the rotation speed are constants with respect to time t, then [ _R(t)] = 0
and [R(t)] is a constant matrix denoted as [R]. With this assumption, Eq. (9) can be rewritten
as

8 x 2 
(t) ; divx�+ � f = � [R]2x + 2� [R] _x + � �x : (12)

The equations can be expressed in terms of unknown u0 using the Piola identity (Ciarlet,
1988) which is written as divx0 (Fu0 �0) = (detFu0)divx� and Eqs. (10) to (12) yield

8 x0 2 
0 , divx0 (Fu0�0)+�0 f0 = �0 [R]
2x0+�0 [R]2u0+2�0 [R] _u0+�0 �u0 ; (13)

8 x0 2 �0 , Fu0�0 n0 = F0 ; (14)

8 x0 2 �0 , u0(t; x0) = 0 ; (15)



in which

f0(t; x0) = f(t; x) ; F0(t; x0) dS0(x0) = F(t; x) dS(x) ;

�0(x0) = �(t; x) detFu0 ; �0 = (detFu0) F
�1
u0 �F�Tu0 ;

Fu0 = I+
@u0
@x0

; Eu0 =
1

2

�
FTu0 Fu0 � I

�
:

It should be noted that �0 is the mass density of the rotating natural configuration 
0. In
this paper, we consider viscoelatic materials and we refer the reader to the theory of linear
viscoelasticity in finite displacements developped by B.D. Coleman and V. Noll (1961) using
a Lagrangian description. Consequently, the relationship between the second Piola-Kirchhoff
stress tensor and the Green-Lagrange strain tensor of the deformed configuration expressed with
respect to 
0 is written as

�0(t; x0) = G0(0; x0) : Eu0(t; x0) +
Z +1

0

_G0(s; x0) : Eu0(t� s; x0) ds ; (16)

in which f _G0 : Eu0gij = f _G0gijkh fEu0gkh with summation over k and h, where t 7! G0(t; x0)
is the relaxation function defined on R with support R+ and values in the fourth-order tensors
and where _G0(t; x0) denotes the derivative of G0(t; x0) with respect to t on ]0 +1[. If the
strucure is only subjected to the stationary parts �0(x0)fs0(x0) and Fs0(x0) of the external forces,
then the structure is in equilibrium in a stationary configuration represented by the domain
denoted as 


S
in R1 with boundary �

S
[ �

S
. Let u0S(x0) be the displacement field in R1 of



S

with respect to 
0. Let �0S and Eu0S be the second Piola-Kirchhoff stress tensor and the
Green-Lagrange strain tensor of stationary configuration 


S
with respect to 
0. We have

�0S(x0) = G0(+1; x0) : Eu0S (x0) ; 8 x0 2 
0 : (17)

From Eqs. (13) to (15) and Eq. (17), we deduce the variational formulation of the boundary
value problem in u0S for the stationary configuration: find u0S in the admissible displacement
fields V0 = fu 2

�
H
1(
0)

�3
; u = 0 on �0g, such that for all �u in V0,Z


0

tr

�
(G0(+1; x0) : Eu0S )F

T

u0S

@�u
@x0

�
dx0 +

Z

0

f�0 [R]
2 u0Sg � �u dx0

=

Z

0

�0 fs0(x0) � �u dx0 +
Z
�0

Fs

0(x0) � �u dS0 �
Z

0

�0 f[R]
2 x0g � �u dx0 : (18)

where an overline denotes the conjugate of a complex quantity and where “tr” is the trace
operator. Now, the stationary configuration is chosen as the reference configuration. We then
introduce in R1 the Lagrangian transports form 
0 into 


S
and from 


S
into 
0 such that

x
S
(x0) = x0 + u0S(x0) ; 8x0 2 
0 ; (19)

x0(xS) = x
S
+ u

S0(xS) ; 8x
S
2 


S
: (20)

Let �
S

and EuS be the second Piola-Kirchhoff stress tensor and the Green-Lagrange strain
tensor of the deformed configuration 
(t) with respect to 


S
. Consequently, the relationship

between �
S

and EuS is written as

�
S
(t; x

S
) = �

S
+G

S
(0; x

S
) : EuS(t; xS)+

Z +1

0

_G
S
(s; u

S
) : EuS (t�s; xS) ds ; (21)



in which

�
S
(x

S
) =

1

detFu0S
Fu0S (G0(+1; x0) : Eu0S )F

T

u0S ; (22)

fG
S
(t; x

S
)g

abpq
=

1

detFu0S
fFu0SgakfFu0SgblfFu0SgpmfFu0SgqnfG0(t; x0gklmn

; (23)

and where _G
S
(t; x0) denotes the partial derivative of G

S
(t; x

S
) with respect to t on ]0 +1[

(and not on R). Therefore, the viscoelastodynamic equations of the rotating structure with finite
displacements is rewritten with respect to this reference configuration using the Piola identity
divxS (FuS �S

) = (detFuS )divx�. We then deduce the variational formulation of the rotating
viscoelastic structure with finite displacements with respect to reference configuration 


S
: find

u
S
(t; �) in the admissible displacement fields V

S
= fu 2

�
H
1(


S
)
�3
; u = 0 on �

S
g, such

that for all �u in V
S

,Z

S

tr

(
�

S

@u
S

@x
S

T

@�u
@x

S

)
dx

S
+

Z

S

tr

�
(G

S
(0; x

S
) : EuS )F

T

uS

@�u
@x

S

�
dx

S

+

Z

S

Z +1

0

tr

��
_G
S
(s; x

S
) : EuS (t� s; x

S
)
�
FTuS (t; xS)

@�u
@x

S

�
ds dx

S

+

Z

S

�
S
f[R]2 u

S
g � �u dx

S
+ 2

Z

S

�
S
f[R] _u

S
g � �u dx

S
+

Z

S

�
S
�u
S
� �u dx

S

=

Z

S

�
S

fe
S
(t; x

S
) � �u dx

S
+

Z
�S

Fe

S
(t; x

S
) � �u dS

S
; (24)

in which �
S

fe
S

and Fe
S

are the time-fluctuation parts around the stationary parts �
S

fs
S

and Fs
S

defined by f
S
= fe

S
+fs

S
and F

S
= Fe

S
+Fs

S
and where f

S
and F

S
are such that f

S
(t; x

S
) = f(t; x)

and F
S
(t; x

S
) dS

S
(x

S
) = F(t; x) dS(x).

2. ROTATING STRUCTURE PROBLEM LINEARIZED AROUND THE STATIONARY
CONFIGURATION.

If we consider small values of displacement field u
S
(t; �), then we can linearize Eq. (24)

around the stationary configuration. Using the same notation u
S

for the displacement field of
the linearized problem, field u

S
(t; �) belongs to V

S
and is such that for all �u in V

SZ

S

tr

(
�

S

@u
S

@x
S

T

@�u
@x

S

)
dx

S
+

Z

S

tr

��
G
S
(0; x

S
) :

@u
S

@x
S

�
@�u
@x

S

�
dx

S

+

Z

S

Z +1

0

tr

��
_G
S
(s; x

S
) :

@u
S

@x
S

(t� s)

�
@�u
@x

S

�
ds dx

S

+

Z

S

�
S
f[R]2 u

S
g � �u dx

S
+ 2

Z

S

�
S
f [R] _u

S
g � �u dx

S
+

Z

S

�
S
�u
S
� �u dx

S

=

Z

S

�
S

fe
S
(t; x

S
) � �u dx

S
+

Z
�S

Fe

S
(t; x

S
) � �u dS

S
: (25)

Let bu
S

,bfe
S

, bFe

S
be the Fourier transform with respect to t of u

S
, fe
S

, Fe

S
and bg

S
such that

bu
S
(!; x

S
) =

Z +1

�1

e

�i ! t u
S
(t; x

S
) dt ;

bfe
S
(!; x

S
) =

Z +1

�1

e

�i ! t fe
S
(t; x

S
) dt ;



bFe

S
(!; x

S
) =

Z +1

�1

e

�i ! t Fe

S
(t; x

S
) dt ; bg

S
(!; x

S
) =

Z +1

0

e

�i!t _G
S
(t; x

S
) dt :

The Fourier transforms of external forces �
S

fe
S

and Fe
S

with respect to t are assumed to be
defined as functions (this assumption is coherent due to the centring of external forces around
their stationary parts). Let A

S
and B

S
be the elastic and damping tensors with respect to 


S
,

defined by (R. Ohayon & C.Soize, 1998)

A
S
(!; x

S
) = G

S
(0; x

S
) + <efbg

S
(!; x

S
)g ; ! B

S
(!; x

S
) = =mfbg

S
(!; x

S
)g :(26)

Let V 0
S

be the antidual space of V
S

, and < �; � > be the antiduality product between V 0
S

and V
S

.
Let L(V

S
; V

0

S
) be the set of all the bounded linear operators from V

S
into V

0

S
. Assuming that

�
S

is a bounded function in 

S

and that external forces are sufficiently regular, we introduce
the operators K

e
(!), K

g
, K

c
, D(!), M and C belonging to L(V

S
; V

0

S
) and the element bfe(!)

belonging to V 0
S

such that, for all u and �u in V
S

,

< K
e
(!) u; �u >=

Z

S

tr

��
A
S
(!; x

S
) :

@u
@x

S

�
@�u
@x

S

�
dx

S
; (27)

< K
g

u; �u >=

Z

S

tr

(
�

S

@u
@x

S

T

@�u
@x

S

)
dx

S
; (28)

< K
c

u; �u >=

Z

S

�
S
f[R]2 ug � �u dx

S
; (29)

< M u; �u >=

Z

S

�
S

u � �u dx
S

; (30)

< D(!) u; �u >=

Z

S

tr

��
B
S
(!; x

S
) :

@u
@x

S

�
@�u
@x

S

�
dx

S
; (31)

< C u; �u >= 2

Z

S

�
S
f[R] ug � �u dx

S
; (32)

<
bfe(!); �u >=

Z

S

�
S

bfe
S
(!; x

S
) � �u dx

S
+

Z
�S

bFe

S
(!; x

S
) � �u dS

S
: (33)

Note that K
e
(!), D(!) and M are hermitian positive-definite operators, C is an anti-hermitian

operator, K
c

is an hermitian negative operator and K
g

is an hermitian operator. In the low-
frequency domain, K

e
(!) can be considered as an operator independent of frequency !. Intro-

ducing the operator K = K
e
+ K

g
+ K

c
belonging to L(V

S
; V

0

S
), the linear operator equation

corresponding to Eq. (25) is written as��
K 0
0 M

�
+ i!

�
C M
�M 0

�
+ i!

�
D(!) 0
0 0

�� � bu
S
(!)

i! bu
S
(!)

�
=

�bfe(!)
0

�
: (34)

Introducing� = �i!, the eigenvalue problem associated with the conservative system is defined
as follows: find (u1 ; u2) in V

S
� V

S
and � 2 C such that�

K 0
0 M

� �
u1
u2

�
= �

�
C M
�M 0

� �
u1
u2

�
: (35)

When K is a positive-definite operator, then it is shown that the spectrum is constituted of a
sequence f�

�
g
��1 such that each eigenvalue �

�
has a finite multiplicity and j�

�
j ! +1

when � ! +1; each eigenvalue can be written as �
�
= �i !

�
in which !

�
is a non-zero

real number. In addition, if !
�

is a solution then �!
�

is also a solution. Finally, the familly



f(u
�;1 ; u

�;2)g��1 of the corresponding eigenfunctions forms a complete set in V
S
� V

S
and

verifies the following orthogonality conditions

< K u
�;1; u

�;1 > + < M u
�;2; u

�;2 >= �
��

; (36)

< C u
�;1; u

�;1 > + < M u
�;2; u

�;1 > � < M u
�;1; u

�;2 >=
i

!
�

�
��

; (37)

in which �
��

is the Kronecker symbol. If (bu
S
; i! bu

S
) is expanded as� bu

S

i! bu
S

�
=

+1X
�=1

U
�

�
u
�;1

u
�;2

�
; (38)

then, for all integer � � 1, we have�
1�

!

!
�

�
U
�
+ i!

+1X
�=1

< D(!) u
�;1; u�;1 > U

�
= <

bfe(!); u
�;1 > : (39)

3. PERTURBED NONLINEAR EQUATION IN THE ROTATING FRAME WITH
RESPECT TO THE STATIONARY CONFIGURATION.

3.1 Perturbations of the rotating natural configuration 
0.

In this section, we define the perturbations of the natural configuration 
0 observed in the
rotating frame. In a first step, we introduce a domain 


0
as a domain occupied by the perturbed

natural configuration observed inR1. We define the geometrical perturbations as a displacement
field in R1 denoted as u

00
and defined on 
0. We have



0
= fx

0
; x

0
= x0 + u

00
(x0) ; 8 x0 2 
0g : (40)

In a second step, we transport mass density �0 and relaxation function G0 from 
0 to 

0

which
are denoted as �

0
and G

0
respectively. We have

�
0
(x0 + u

00
(x0)) = �0(x0) ; G

0
(t; x0 + u

00
(x0)) = G0(t; x0) : (41)

In a last step, we introduce the perturbations ��
0

and �G
0

of �
0

and G
0

with respect to 

0

�

0

0
= �

0
+��

0
; G0

0
= G

0
+�G

0
: (42)

In practice, the perturbations ��
0

and �G
0

of the mass density and the relaxation function
have to be defined with respect to domain 
0. Consequently, we proceed to a Lagrangian
transport of perturbations ��

0
and �G

0
from 


0
to 
0 and we use the same notation. Due

to this perturbations, stationary configuration 

S

is modified and occupies a domain denoted
as 


S

. Nevertheless, we do not consider the viscoelastodynamic equations of the perturbed
configuration around 


S

but we consider it around 

S

because, in practice, all the calculations
are performed with respect to the stationary configuration of the unperturbed structure. In R1
and at time t, the deformed configuration of the perturbed structure occupies a domain denoted
as 
0(t). We then introduce new displacement field u0

S
(t; �) which represents the displacement

field of 
0(t) with respect to 

S

,

x0(t; x
S
) = x

S
+ u0

S
(t; x

S
) ; 8x

S
2 


S
: (43)

3.2 Weakly perturbed nonlinear equations in the rotating frame with respect to the
unperturbed stationary configuration.

If the perturbations are sufficiently small, then the nonlinear equations of the perturbed
structure in the rotating frame (with respect to the the unperturbed stationary configuration)
can be linearized with respect to perturbations u

00
, ��

0
and �G

0
(we do not consider the



linearization with respect to displacement field u0
S

). In the following equations, each quantity
which is related to 


S
and which is expressed as a function of x0 has to be submitted to the

Lagrangian transport defined by Eq. (20). In order to simplify the equations we introduce the
tensors T1, T2, K1 and K2 such that

fK1(xS)gijpqab =
1

detFu0S
fFu0Sgia fFu0Sgjb fEu0Sgpq ; (44)

fT1(xS)gijkh = �
1

detFu0S
fFu0Sgia fFu0Sgjh fEu0Sgpq fG0(+1; x0)gakpq

�
1

detFu0S
fFu0Sgja fFu0Sgih fEu0Sgpq fG0(+1; x0)gakpq

�
2

detFu0S
fFu0Sgia fFu0Sgjb fEu0SgphfG0(+1; x0)gabpk

�
1

detFu0S
fFu0Sgia fFu0Sgjb fG0(+1; x0)gakpq ; (45)

fK2(xS)gabpqklmn
=

1

detFu0S
fFu0Sgak fFu0Sgbl fFu0Sgpm fFu0Sgqn ; (46)

fT2(t; xS)gabpqij = �
1

detFu0S
fFu0Sgak fFu0Sgbj fFu0Sgpm fFu0Sgqn fG0(t; x0)gkimn

�
1

detFu0S
fFu0Sgaj fFu0Sgbl fFu0Sgpm fFu0Sgqn fG0(t; x0)gilmn

�
1

detFu0S
fFu0Sgak fFu0Sgbl fFu0Sgpj fFu0Sgqn fG0(t; x0)gklin

�
1

detFu0S
fFu0Sgak fFu0Sgbl fFu0Sgpm fFu0Sgqj fG0(t; x0)gklmi

: (47)

Therefore, displacement field u0
S
(t; �) in V

S
is such that for all �u in V

S
,Z


S

tr

(
�

S

@u0T
S

@x
S

@�u
@x

S

)
dx

S
+

Z

S

tr

(�
K1 :: �G0(+1; x0)

� @u0T
S

@x
S

@�u
@x

S

)
dx

S

+

Z

S

tr

(�
T1 :

@u
00

@x0

�
@u0T

S

@x
S

@�u
@x

S

)
dx

S
+

Z

S

(divx0 u
00
) tr

(
�

S

@u0T
S

@x
S

@�u
@x

S

)
dx

S

+

Z

S

tr

��
G
S
(0; x

S
) : Eu0

S

�
FTu0

S

@�u
@x

S

�
dx

S

+

Z

S

(divx0u
00
) tr

��
G
S
(0; x

S
) : Eu0

S

�
FTu0

S

@�u
@x

S

�
dx

S

+

Z

S

tr

���
T2(0; xS) :

@u
00

@x0

�
: Eu0

S

�
FTu0

S

@�u
@x

S

�
dx

S

+

Z

S

tr

�h�
K2 :: �G0(0; x0)

�
: Eu0

S

i
FTu0

S

@�u
@x

S

�
dx

S

+

Z

S

Z +1

0

tr

��
_G
S
(s; x

S
) : Eu0

S
(t� s; x
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in which

fK1(xS) :: �G0(+1; x0)gij = fK1(xS)gijpqab f�G0(+1; x0)gabpq ; (49)

fK2(xS) :: � _G
0
(s; x0)gijpq = fK2(xS)gijpqklmn

f _G
0
(s; x0)gklmn

: (50)

and where f0(t) and fc(t) are the elements belonging to V 0
S

such that for all �u in V
S

,
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In Eq. (51), f0
S

and F0
S

are defined by

F0
S
(t; x

S
) dS

S
(x

S
) = [Q(t)]F(t; x0) dS(x0) ; f0

S
(t; x

S
) = [Q(t)] f(t; x0) : (53)

in which x0(t; x
S
) = x

S
+ u0

S
(t; x

S
).

3.3 Linearization of the perturbed nonlinear equations in the rotating frame
around the unperturbed stationary configuration.

In a first step, we introduce the operators P
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in which bt2(!; xS) and �bg0(!; xS) are such that
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In a second step, in the context of linearization, we write displacement field u0
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where fs0
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and Fs0
S

are the stationary parts of fields f0
S

and F0
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. Let fe0(t) be the element belonging
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It should be noted that field us0
S

corresponds to the displacement field of 

S

with respect to 

S

calculated with the linearized equation with respect to the displacement field. Letbue0
S

andbfe0(!)
be the Fourier transform with respect to t of ue0

S
and fe0(t) such that
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Then for small strains and in the frequency domain, the linear operator equation corresponding
to Eq. (48) is written as�
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Since f(u
�;1 ; u
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, then (bue0
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Therefore, Eq. (60) can be rewritten such that for all integer � � 1,�
1�
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�
U
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=< bfe0(!); u
�;1 > : (62)

4. CONCLUSION.

We have presented the nonlinear structural dynamic equations in finite displacements of a
rotating structure expressed with respect to a pre-stressed configuration


S
. We have considered

perturbations of the natural configuration of the structure. Then, we have written the nonlinear
viscoelastodynamic equations of the weakly perturbed structure in finite displacement. For
small strains around the stationary configuration, the equations of the weakly perturbed rotating
structure are linearized around stationary configuration 


S
. Then the solution of the perturbed

problem is expanded on the eigenfunctions of the unperturbed rotating structure. We show that
the equations obtained are not self-evident, particulary for geometrical perturbations.
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